Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Ландау Э.N. Основы анализа Действия над целыми, рациональными, иррациональными, комплексными числами
 
djvu / html
 

10 Предисловие
не неправильным, но лишь почти диаметрально противоположным моей личной точке зрения, когда для вещественных чисел в качестве аксиом постулируют многочисленные обычные законы действий и основную теорему Дедекинда (теорему 205 этой книжки). Разумеется, я не доказываю непротиворечивости пяти аксиом Пеано (по той причине, что этого сделать нельзя); однако, каждая из них явно независима от предыдущих. С другой стороны, при указанном расширенном числе аксиом учащемуся сразу навязывается вопрос, нельзя ли какие-нибудь из них доказать (а хитрец добавил бы: или опровергнуть) с помощью предшествующих; и так как доказуемость всех этих вещей известна уже многие десятилетия, то почему же не дать учащемуся уже в самом начале ознакомиться с этими (всюду совершенно простыми) доказательствами.
Я уже не буду подробно останавливаться на том, что часто в основу не кладется даже основная теорема Дедекинда (или равносильный ее суррогат при обосновании вещественных чисел с помощью фундаментальных последовательностей), так что такие вещи, как теорема о среднем значении из дифференциального исчисления, основывающаяся на ней теорема, что функция, производная которой на некотором интервале равна нулю, постоянна в этом интервале, или, например, теорема, что постоянно убывающая ограниченная последовательность чисел стремится к некоторому пределу, — остаются без всякого доказательства или же, что еще хуже, снабжаются мнимыми доказательствами, ничего на самом деле не доказывающими. Число представителей этой крайней разновидности другой точки зрения кажется мне не только монотонно убывающим, но и предел,

 

1 10 11 12 13 14 15 16 17 18 19 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180


Математика