Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Айнс Э.Л. Обыкновенные дифференциальные уравнения
 
djvu / html
 

ПРЕДИСЛОВИЕ РЕДАКТОРА
Выпускаемая в русском переводе книга Айнса (Е. L. Ince) представляет ценный вклад в нашу математическую литературу. Книга состоит из 21 главы и разделена на две части. В первой части рассматриваются диференциальные уравнения в вещественной области, во второй—в комплексной области. Начинается книга с рассмотрения элементарных методов интегрирования, после чего следуют две главы о существовании и природе решений и непрерывных группах преобразований. Далее после изложения общей теории линейных диференциальных уравнений, автор переходит к алгебраической теории линейных диференциальных систем, теории Штурм-Лиувилля и связанной с ними общей теории граничных проблем. В этих главах с большой полнотой изложены наиболее существенные результаты, полученные в столь важных для физики и техники вопросах, как вопросы теории собственных чисел и решений. Основные работы Штурм-Лиувилля, Биркгоффа и Бохера изложены исчерпывающе. Первые 3 главы второй части посвящены теоремам существования и особенностям нелинейных диференциальных уравнений. Остальные 7 глав содержат чрезвычайно обширный материал по линейным уравнениям в комплексной области. Рассматриваются: решение уравнений при помощи рядов, уравнения с нерегулярными особыми точками, системы уравнений. Кончается книга главами об интегрировании при помощи контурных интегралов и классификацией линейных уравнений второго порядка с рациональными коэфициентами. Классические результаты Пуанкаре, Фукса, Клейна, Фробениуса, Пенлеве, Гамбургера изложены в этой части с достаточной полнотой. Значительное внимание уделено в книге специальным функциям (Ляме, Матье, Бесселя и др.). Целый ряд весьма ценных результатов и методов в этой области (функции Матье) принадлежат автору. В частности, Айнсом составлены прекрасные таблицы функций Матье, вышедшие в 1935 г. в русском издании. В книге приведено огромное количество литературных ссылок, охватывающих все наиболее существенное в области диференциальных уравнений за последние 200 лет. В конце каждой главы приложено большое количество

 

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710


Математика