Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Гельфонд А.О. Решение уравнений в целых числах
 
djvu / html
 

Предлагаемая вниманию читателя книга посвящена также одному из наиболее интересных разделов теэрии чисел, а именно, — решению уравнений в целых числах.
Решение в целых числах алгебраических уравнений с целыми коэффициентами более чем с одним неизвестным представляет собой одну из труднейших проблем теории чисел. Этими задачами много занимались самые выдающиеся .математики древности, например греческий математик Пифагор (VI век до н. э.), александрийский математик Диофант (II —III век н. э.) и лучшие математики более близкой к нам эпохи —П. Ферма (XVII век), Л. Эйлер (XVIH век), Лагранж (XVIII век) и другие. Несмотря на усилия многих поколений выдающихся математиков, в этой области отсутствуют сколько-нибудь общие методы типа метода тригонометрических сумм И. М. Виноградова, позволяющего решать самые различные проблемы аналитической теории чисел.
Проблема решения уравнений в целых числах решена до конца только для уравнений второй степени с двумя неизвестными. Отметим, что для уравнений любой степени с одним неизвестным она не представляет сколько-нибудь существенного интереса, так как эта задача может быть решена с помощью конечного числа проб. Для уравнений выше второй степени с двумя или более неизвестными весьма трудна не только задача нахождения всех решений в целых числах, но даже и более простая задача установления существования конечного или бесконечного множества таких решений.
Решение уравнений в целых числах имеет не только теоретический интерес. Такие уравнения иногда встречаются в физике.
Теоретический интерес уравнений в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел. Кроме того,

 

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60


Математика