Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Бергман П.Г. Введение в теорию относительности
 
djvu / html
 

По отношению к зеркальному отражению системы координат они ведут себя по-разному: «аксиальный вектор» при этом меняет свое направление на обратное. Ротор «полярного вектора» является аксиальным вектором, и наоборот.
В линейном уравнении все члены должны, конечно, преобразовываться одинаковым образом; в противном случае уравнение не будет ковариантно относительно отражений. Из уравнений (7.2) и (7.4) видно, что Е и Н не могут быть векторами одного типа.
Мы привыкли считать знак заряда не зависящим от ориентировки координатной системы. Напряженность электрического поля представляет собой силу, действующую на единичный заряд, поэтому ее направление не должно изменяться при отражении системы координат. Таким образом Е является полярным вектором. Отсюда следует, что Н — аксиальный вектор, а I и А — полярные векторы.
Мы видели, что в трех измерениях «аксиальные векторы» эквивалентны антисимметричным тензорам второго ранга. В силу этого они могут входить вместе с «полярными» величинами в линейные ковариантные уравнения. С точки зрения ковариантности часто бывает удобно выражать эту эквивалентность явно и представлять Н в виде антисимметричного тензора с компонентами
(7.8)
Запишем уравнения Максвелла в векторно-тензорной форме:
(7. la)
(7.3а)
(74> с dt — с dt • <Л*а>

 

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 151 152 153 154 155 156 157 158 159 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370


Математика