Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Вейль Г.N. Философии математики Сборник работ
 
djvu / html
 

I. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ПОЗНАНИЯ
В МАТЕМАТИКЕ
I. От АНАКСАГОРА до ДЕДЕКИНДА
Математика — это наука о бесконечном. Великим .достижением греков было преобразование полярной противоположности конечного и бесконечного в мощное и плодотворное орудие познания действительности. Интуиция бесконечного, спокойное и не задающееся никакими вопросами признание его были присущи восточному миру. Но на востоке эта интуиция оставалась лишь чисто абстрактным сознанием, равнодушно оставлявшим существование рядом с собой неоформленного, необработанного конкретного многообразия вещей. Э,то Пришедшее с востока религиозное чувство бесконечного arceipov овладело греческой душой в предшествовавшую греко-персидским войнам дионисо-орфическую эпоху. Греко-персидские войны и в этом отношении знаменовали собой разрыв западного мира с восточным. С этого момента указанная полярность и стремление к ее преодолению стали для греков движущим мотивом познания. Но всякий раз, когда, казалось, уже удавалось достигнуть желанного синтеза, старое противоречие возникало вновь и притом в еще более углубленном виде. Противоречие это определяло собою вплоть до наших дней ход развития теоретического познания.
Тот вид, в котором понятие бесконечности могло быть введено в науку, впервые ему придан был Анаксагором. В одном дошедшем до нас отрывке из его сочинений говорится: „В малом не существует наименьшего, но всегда имеется еще меньшее. Ибо то, что существует, не может исчезнуть, как бы далеко ни было продолжено деление". Речь здесь идет о пространстве или о теле; непрерывное, говорит Анаксагор, не может состоять из дискретных элементов, которые отделены друг от друга и как бы отрублены друг от друга ударами топора. Пространство бесконечно не только в том смысле, что в нем не имеется конца; оно кроме того в любом своем месте бесконечно, так сказать, во-внутрь, и точка в нем может быть определена лишь путем бесконечного и от раза к разу все точнее и точнее фиксирующего ее процесса деления. Это представление противоречит интуиции покоящегося и законченного в себе бытия пространства. Для заполняющего его многообразия качеств пространство служит принципом их „разграничения, впервые вообще создающим возможность существования различия в сфере качественного; однако пространство является не только принципом разграничения, но вместе с тем и принципом соприкосновения, непрерывной
9

 

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 110 120


Математика