Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Марков В.N. О функциях наименьше уклоняющихся от нуля
 
djvu / html
 

распорядиться числомъ А такъ, чтобы было
<•>( и, следовательно, по лемме § 2 у не можетъ быть наименее уклоняющеюся отъ нуля въ промежутке (а, Ъ) функпдей вида (1).
Итакъ, если у наименее уклоняющаяся отъ нуля въ промежутке (а, Ь) функщя вида (1)и^<и-*-1,то уравнеше (9) имеетъ место для произвольной целой функщи ф (х) степени не выше и — р-.
А потому, если у наименее уклоняющаяся отъ нуля въ промежутке (а, Ъ) функщя вида (1), то формула (11) приведется къ
Принимая же во внимаше равенство
F' (я,) = (- If-' Д V, - * J Д" (хт - х() ,
m = 1 m=i-f-l
заключаемъ, что если въ ряду (8) есть числа противныхъ знаковъ, то уравнетю
ofo) = 0 (13)
можно удовлетворить одновременно съ неравенствами
9(<»J /"(*,) < 0, g(xj f(xz] < 0,.. ., д(хр] f(xp) < 0 (14),
и, следовательно, по лемме § 2 у не можетъ быть наименее уклоняющеюся отъ нуля въ промежутке (а, V) функпдей вида (1).
Если же въ ряду (8) н^тъ чиселъ противныхъ знаковъ, а при ^<и-»-1, кроме того, им*етъ место уравнеше(9) для произвольной целой функщи ф (х) степени не выше и—р°-, то уравнетю (13) нельзя удовлетворить одновременно ,съ неравенствами (14), и, следовательно, по лемме § 2 у наименее уклоняющаяся отъ нуля въ промежутке (а, Ъ) функщя вида (1).

 

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80


Математика