Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Бернштейн С.Н. Теория вероятностей
 
djvu / html
 

180
ЗАКОН БОЛЬШИХ ЧИСЕЛ
ограниченном возрастании п, вероятность неравенства
п
будет стремиться к достоверности, как бы мало ни было е.
Та же серия опытов может быть использована для получения; ряда зависимых величин, которые все связаны между собой и к которым закон больших чисел неприменим, хотя дисперсии [^ каждой: из них ограничены.
Обозначим через m1( ma,..., тп последовательно наблюдаемые числа появлений события А при 1, 2,..., п опытах и будем рассматривать числа
т.- — ip
/Ipq
Очевидно, М. О. х. = 0. Можем ли мы в данном случае утверждать, чта неравенство
х
п
<
(при всяком ? > 0) обладает вероятностью, стремящеюся к достоверности, при увеличении л? Находим
p4.= JVL О. х}=1.
1
Рй = - т= М. О. (т, - ip) (rnk — kp) = pqv ik
= - — M. O. {ml — ip) [m^ — ip + mk — mt + (i—k)p\ — pqv ik
1 /~7
= - -!==• . M.O. (т.- — ip)* = 1/ -т-, • pq V ik ' ^ V k
так как, полагая k > /, замечаем, что ввиду независимости результатов последующих (k — /) опытов от результатов первых i опытов-. М . О. (mf — ip) [mk — от,- + (/ —k)p]=Q. Следовательно,
+
.
F^ -- - -Г ••• П
1+ /T+...+
> п(п +1)

 

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 181 182 183 184 185 186 187 188 189 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360


Математика